Cold region hydrologyIssuing time:2023-01-13 16:50 Quantitative analysis was completed on the degradation process of the permafrost in the Qinghai-Tibe Plateau. Hydrological processes of the permafrost in the cold region of the Qinghai-Tibet Plateau were revealed from multiple perspectives by combining isotope and field observation, and the generating mechanism of the thermokarst lake was clarified. The results have formed a new understanding of the hydrological process in cold regions under climate change. List of related publications: 1. Shen, T., Jiang, P., Ju, Q., Yu, Z.*, Chen, X., Lin, H., Zhang, Y. 2022. Changes in permafrost spatial distribution and active layer thickness from 1980 to 2020 on the Tibet Plateau. Science of the Total Environment, 859, 160381. DOI: 10.1016/j.scitotenv.2022.160381 (SCI, IF: 10.753) 2. Dai, X., Yu, Z.*, Matheny, A. M., Zhou, W., Xia, J. 2022. Increasing evapotranspiration decouples the positive correlation between vegetation cover and warming in the Tibetan plateau. Frontiers in Plant Science, 13. (SCI, IF:6.627) 3. Chen, P., Yu, Z.*, Czymzik, M., Aldahan, A., Wang, J., Yi, P., Possnert, G., Chen, X., Zheng, M., Jin, H., Luo, D., and Wu, Q. 2021. Holocene monsoon dynamics at Kunlun pass on the northeastern Qinghai-Tibet plateau. Science of the Total Environment, 771, 145369. (SCI, IF: 10.753) 4. Sun, A., Yu, Z.*, Zhou, J., Acharya, K., Ju, Q., Xing, R., Huang, D., and Wen, L. 2020. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Science of the Total Environment, 712, 135632. (SCI, IF: 10.753) 5. Xu, S., Yu, Z.*, Lettenmaier, P., McVicar, T., and Ji, X. 2020. Elevation-dependent response of vegetation dynamics to climate change in a cold mountainous region. Environmental Research Letters, 15(9), 094005. (SCI, IF: 6.947) 6. Sun, A., Zhou, J., Yu, Z.*, Jin, H., Sheng, Y., and Yang, C. 2019. Three-dimensional distribution of permafrost and responses to increasing air temperatures in the head waters of the Yellow River in High Asia, Science of The Total Environment, 666, 321-336. (SCI, IF: 10.753) 7. Gu, H., Yu, Z.*, Peltier, R., and Wang, X. 2020. Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Climate Dynamics, 54(7-8), 3781-3801. (SCI, IF: 4.901) 8. Chen, X., Yu, Z.*, Huang, Q., Yi, P., Shi, X., Aldahan, A., Xiong, L., Wan, C., and Chen, P. 2021. Evaluating the water level variation of a high-altitude lake in response to environmental changes on the southern Tibetan Plateau. Journal of Hydrologic Engineering, 26(5), 5021010. (SCI) 9. Yi, P., Yu, Z.*, Chen, P., Chen, L., Aldahan, A., Hou, X., Fan, Y., Possnert, G., Muscheler, R., Zhou, W., Sudicky, E., Schwartz, F., and Murad, A. 2019. Late Holocene pathway of Asian summer monsoons imprinted in soils and societal implications. Quaternary Science Reviews, 215, 35-44. (SCI, IF: 4.456) 10. Yi, P., Luo, H., Chen, X., Chen, L., Yu, Z.*, Jin, H., Chen, X., Wan, C., Aldahan, A., Zheng, M., and Hu, Q. 2018. Evaluation of groundwater discharge into surface water by using Radon-222 in the source area of the yellow river, Qinghai-Tibet plateau. Journal of Environmental Radioactivity, 192, 257-266. (SCI) 11. Chen, P., Yi, P., Xiong, L., Yu, Z.*, Aldahan, A., Muscheler, R., Jin, H., Luo, D., Possnert, G., Wu, M., Wan, C., and Zheng, M. 2019. Use of 10Be isotope to predict landscape development in the source area of the yellow river (SAYR), northeastern Qinghai-Tibet Plateau. Journal of Environmental Radioactivity, 203, 187-199. (SCI) 12. Yu, C., Sun, Y., Zhong, X., Yu, Z.*, Li, X., Yi, P., Jin, H., and Luo, D. 2019. Arsenic in permafrost-affected rivers and lakes of Tibetan Plateau, China. Environmental Pollutants and Bioavailability, 31(1), 226-232. (SCI) 13. Guo, Z., Su, R., Zeng, J., Wang, S., Zhang, D., Yu, Z., Wu, Q., Zhao, D., 2022. NosZI microbial community determined the potential of denitrification and nitrous oxide emission in river sediments of Qinghai-Tibetan Plateau. Environmental Research, 214, 114138. (SCI, IF:8.431) 14. Li, X., Ding, Y. Hood, E., Raiswell, R., Han, T., He, X., Kang, S., Wu, Q., Yu, Z., Mika, S., Liu, S., and Li, Q. 2019. Dissolved iron supply from Asian glaciers: Local controls and a regional perspective. Global Biogeochemical Cycles, 33(10), 1223-1237. (SCI, IF: 6.5) 15. Wan, C., Gibson, J., Shen, S., Yi, Y., Yi, P., and Yu, Z. 2019. Using stable isotopes paired with tritium analysis to assess thermokarst lake water balances in the Source Area of the Yellow River, northeastern Qinghai-Tibet Plateau, China. Science of the Total Environment, 689, 1276-1292. (SCI, IF: 10.753) 16. Wang, W., Li, J., Yu, Z., Ding, Y., Xing, W., and Lu, W. 2018. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: components partitioning, multidecadal trends and dominated factors identifying. Journal of Hydrology, 559, 471-485. (SCI, IF: 6.708) 17. Li, B., Zhang, J., Yu, Z., Liang Z., Chen, L., and Acharya, K. 2017. Climate change driven water budget dynamics of a Tibetan inland lake. Global and Planetary Change, 150, 70-80. (SCI, IF: 4.956) 18. Yang, T., Wang, X., Yu, Z., Krysanova, V., Chen, X., Schwartz, F., and Sudicky, E. 2014. Climate change and probabilistic scenario of streamflow extremes in an alpine region. Journal of Geophysical Research: Atmospheres, 119(14), 8535-8551. (SCI, IF: 5.22) 19. Li, X., Ding, Y., Xu, J., He, X., Han, T., Kang, S., Wu, Q., Mika, S., Yu, Z., and Li, Q. 2018. Importance of mountain glaciers as a source of dissolved organic carbon. Journal of Geophysical Research-Earth Surface, 123(9), 2123-2134. (SCI, IF: 4.42) 20. Lu, W., Wang, W., Shao, Q., Yu, Z., Hao, Z., Xing, W., Yong, B., and Li, J. 2018. Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model. Hydrological Processes, 32(13), 2096-2117. (SCI, IF: 3.784) 21. Li, X., Ding, Y., Han, T., Kang, S., Yu, Z., and Jing, Z. 2019. Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No. 1 in Central Asia. Hydrological Processes, 33(26), 3258-3281. (SCI, IF: 3.784) 22. Wang, W., Xing, W., Shao, Q., Yu, Z., Peng, S., Yang, T., Yong, B., Taylor, J., and Singh, V. 2013. Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. Journal of Geophysical Research: Atmospheres, 118(10), 4049-4068. (SCI, IF: 5.22) 23. Li, X., He, X., Kang, S., Sillanpää, M., Ding, Y., Han, T., Wu, Q., Yu, Z., and Qin, D.2016. Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 541, 1104-1118. (SCI. IF: 6.708) 24. Jin, H., Ju, Q., Yu, Z., Hao, J., Gu, H., Gu, H., and Li, W. 2019. Simulation of snowmelt runoff and sensitivity analysis in the Nyang River basin, southeastern Qinghai-Tibetan Plateau, China. Natural Hazards, 99(2), 931-950. (SCI, IF: 3.158) 25. Li, B., Yu, Z., Liang, Z., and Acharya, K. 2014. Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global and Planetary Change, 118, 69-84. (SCI, IF: 4.956) 26. Wang, X., Yang, T., Krysanova, V., and Yu, Z. 2015. Assessing the impact of climate change on flood in an alpine catchment using multiple hydrological models. Stochastic Environmental Research and Risk Assessment, 29(8), 2143-2158. (SCI, IF: 3.821) 27. Yi, P., Chen, X., Wang, Z., Aldahan, A., Hou, X., and Yu, Z. 2018. Iodine isotopes (129I and 127I) in the hydrosphere of Qinghai-Tibet region and South China Sea. Journal of Environmental Radioactivity, 192, 86-94. (SCI) 28. Li, B., Acharya, K., Yu, Z., Liang, Z., and Su, F. 2015. The mass and energy exchange of a tibetan glacier: distributed modeling and climate sensitivity. Journal of the American Water Resources Association, 51(4), 1088-1100. (SCI) 29. Zheng, M., Wan, C., Du, M., Zhou, X., Yi, P., Aldahan, A., Jin, H., Luo, D., and Yu, Z. 2016. Application of Rn-222 isotope for the interaction between surface water and groundwater in the source area of the Yellow River. Hydrology Research, 47(6), 1253-1262. (SCI) 30. Yi, P., Wan, C., Jin, H., Luo, D., Yang, Y., Wang, Q., Yu, Z., and Aldahan, A. 2018. Hydrological insights from hydrogen and oxygen isotopes in source area of the yellow river, east-northern part of Qinghai-Tibet plateau. Journal of Radioanalytical and Nuclear Chemistry, 317(1), 131-144. (SCI) 31. Wan, C., Li, K., Shen, S., Gibson, J. J., Ji, K., Yi, P., and Yu, Z. 2019. Using tritium and 222Rn to estimate groundwater discharge and thawing permafrost contributing to surface water in permafrost regions on Qinghai-Tibet Plateau. Journal of Radioanalytical and Nuclear Chemistry, 322(2), 561-578. (SCI) 32. Wang, X., Yang, T., Shao, Q., Acharya, K., Wang, W., and Yu, Z. 2012. Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone, Stochastic Environmental Research and Risk Assessment, 26(3), 405-418. (SCI, IF: 3.821) 33. Yu, C., Li, Y., Jin, H., Ma, Q., Yu, Z., Shi, K., Li, X., and Chen, G. 2021. Organic versus inorganic carbon exports from glacier and permafrost watersheds in Qinghai-Tibet Plateau. Aquatic Geochemistry, 27, 283-296. (SCI) 34. Wan, C., Li, K., Zhang, H., Yu, Z., Yi, P., and Chen, C. 2020. Integrating isotope mass balance and water residence time dating: insights of runoff generation in small permafrost watersheds from stable and radioactive isotopes. Journal of Radioanalytical and Nuclear Chemistry, 326(1), 241-254. (SCI) |